

STATA TRAINING

Shaheed Bhagat Singh College

Shweta Gupta Research Analyst Environment & Production Technology Division (EPTD) International Food Policy Research Institute

New Delhi | 8th April 2022

Part 5: Data cleaning

Extreme values

- What are extreme values?
 o smallest or largest values of a variable
- How to identify extreme values
 sum mpg- use this when you have a large range of values

 sum foreign → extreme values are 0 and 1 but this is a dummy variable with
 only these 2 values

tab rep78- more suitable with discreet data

- Can also use graphs → kdensity price
- What to do with extreme values?
 - DO NOT DROP
 - Calculate statistics excluding the extreme values
 - Convert continuous variable into a discreet variable with class intervals

Missing values

What are missing values?

When the value of a variable(s) is missing for 1 or more observations
 NOTE: ZERO is not always a missing value

```
    How to identify missing values
sum- this gives the N for all variables
tab rep78, missing
count if rep78==.
    For numeric
variable
    For string variable, missing values appear as . (dot) and (space)
tab make, missing
count if make=="." | make==""" make=="""
```


Missing values (cont.)

- What to do with missing values?

 Identify the cause of missing values
 Is it missing data? (data non-availability)
 Is that value supposed to be missing? (conditioned data)
- Drop only if the entire observation/variable has missing values missings dropobs, force missings dropvars varlist
- drop if price==. & mpg==. & make=="""
- Replacing missing value by mean of the variable
 By mean of full variable
 - \odot By mean of the variable by class
 - $_{\odot}$ Never recommend doing, especially when a large no. of missings

Example of missing values

name_student	gender	course	year	score_eco	score_english	score_math
А	Female	Eco_hons	2	89	60	80
В	Male	Eco_hons	2	80	40	90
С		Eng_hons	3	•	70	
D	Female	Eng_hons	3		77	
E		Maths_hons	1	•		100
F	Female	Maths_hons	1			98
G	Male	Maths_hons	3		50	67
Н	Male	Maths_hons	3		79	59

Scores are out of 100 Year captures the year of college

Loops- forval/foreach commands

Repeat a set of commands over different values of rep78 tab rep78 foreach x in 1 2 3 4 5 { sum price if rep78==`x' forval $x = 1/5{$ sum price if rep78==`x'

Part 6.1: Regression Analysis

2 variable linear regression

Y is a continuous variable; X is continuous

<u>reg</u>ress y x

reg price mpg

. reg price mpg

Source	SS	df	MS	Numb	er of obs	=	74
				- F(1,	72)	=	20.26
Model	139449474	1	139449474	Prob	> F	=	0.0000
Residual	495615923	72	6883554.48	R-sq	uared	=	0.2196
				- Adj	R-squared	=	0.2087
Total	635065396	73	8699525.97	Root	MSE	=	2623.7
	I						
price	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
mpg _cons	-238.8943 11253.06	53.07669 1170.813	-4.50 9.61	0.000 0.000	-344.70 8919.0	08 88	-133.0879 13587.03

		ANOVA table Sq. root of Residual				of
	. reg price mp	3	squ	ares= √(6883	3554.48)	F-test for joint significance
	Source	SS	df	MS	Numb	er of obs = 74
	Model Residual	139449474 495615923	1 72 6	139449474 5883554.48	F(1, Prob R-sq	72) = 20.26 > F = 0.0000 uared = 0.2196
	Total	635065396	73 8	3699525.97	Adj I Root	R-squared = 0.2087 MSE = 2623.7
	price	Coef. S	td. Err.	t	P> t	[95% Conf. Interval]
	mpg _cons	-238.8943 5 11253.06 1	3.07669 170.813	-4.50 (9.61 (0.000 0.000	-344.7008 -133.0879 8919.088 13587.03
PRI	Dependent inde var var Constant term	pendent for slope & constant	ts Standard error of coefficients	T- statistic of coeff.	P-value of t- statistic	95% CI for each coefficient

Multiple variable linear regression

Y is a continuous variable; X is continuous
 <u>reg</u>ress y x1 x2
 reg price mpg rep78

. reg price mpg rep78

cons

9657.754

Source	SS	df	MS	Numbe	er of obs		69
				· F(2,	66)	=	11.06
Model	144754063	2	72377031.7	Prob	> F	=	0.0001
Residual	432042896	66	6546104.48	R-squ	uared	=	0.2510
				Adj I	R-squared	i =	0.2283
Total	576796959	68	8482308.22	Root	MSE	=	2558.5
price	Coef.	Std. Err.	t	P> t	[95% C	Conf.	Interval]
mpg	-271.6425	57.77115	-4.70	0.000	-386.98	364	-156.2987
rep78	666.9568	342.3559	1.95	0.056	-16.57	789	1350.492

7.17

0.000

6969.3

12346.21

1346.54

Linear regression

- T statistic-
 - \circ t= (b_k -0)/b_k(SE) \circ Ho: B_k=0
- Calculate t-statistic for mpg from the output.

di "t=" (-238.8943-0)/(53.07669)

- Calculate t-statistic for mpg under the following Null hypothesis:
 o Ho: B₁ =250
 t = (-238.8943-250)/(-238.8943)
- di "t=" (-238.8943-250)/(53.07669)

Linear regression

 Change level of significance in confidence interval reg price mpg, level(99)

- ANOVA table
 - \circ MS=SS/df
 - $_{\odot}$ Model: Explained sum of squares (ESS)
 - \circ Residual: Residual sum of squares (RSS)
 - Total: Total sum of squares (TSS)

Source	55	df	MS
Model	139449474	1	139449474
Residual	495615923	72	6883554.48
Total	635065396	73	8699525.97

Linear regression

Number of obs	=	74
F(1, 72)	=	20.26
Prob > F	=	0.0000
R-squared	=	0.2196
Adj R-squared	=	0.2087
Root MSE	=	2623.7

Root MSE= root of Root

- R-squared = Coefficient of determination= (Coefficient of correlation)² $R^2 = r^2$
- What is *I* here?

reg price mpg
di (0.0234)^(1/2)

pwcorr price mpg

Linear regression-Things to look for

- Beta coefficients- their signs and coefficient value- does it make sense?
- P value of each coefficient- significant at various alpha
- F test- the joint significance of all covariates
- R squared
- N- is N less than the actual no. of observations in data?-
 - Stata omits that observation entirely where the value of 1/more variable(s) is missing

Linear regression- multiple regressions in one frame

reg y x1
eststo model1
reg y x1 x2
eststo model2
esttab model1 model2

Example: reg price mpg eststo model1 reg price mpg rep78 eststo model2 esttab model1 model2

- By default- beta, t stats, N, and significance (*).
- To add options- r2 se/p ar2
- NOTE: for displaying multiple regressions, eststo is fine, but to compare R-square of 2 models, dependent variable must be same

Getting predicted values

```
reg y x1 x2
                                                 Put any name
• Get predicted values of y \rightarrow \text{predict yhat}
• Get predicted values of error \rightarrow predict ehat, residuals
                                         Put any name
reg price mpg
predict pricehat
predict ehat, residuals
Go to Data browser to see the variables pricehat and ehat
```


Forecasting

- yhat= b0 + b1*x
- pricehat=11253.06 + (-238.8943)*mpg → regression equation
- The predicted values of y make more sense ONLY IF the x values lie close to their sample range.
- sum mpg \rightarrow gives the range of mpg

Forecasting- example

- pricehat=11253.06 + (-238.8943)*mpg
- Exercise: A) Predict yhat when x lies in sample range mpg=25, pricehat=?
- B) Predict yhat when x lies outside sample range (extrapolating) mpg =50, pricehat=?; mpg=100, pricehat=?
- C) Comment on the predicted yhat

Part 6.2: Different functional forms

Log-linear/constant elasticity/double-log model

- Y= AX^{b1}
- Iny= bo + b1*lnx + u
- b1→ elasticity of y wrt. X gen lny= ln(y) gen lnx= ln(x) regress lny lnx
- Y=AX1^{b1}X2^{b2}
- Lny= b0 + b1*lnx1 + b2*lnx2
- b1 → partial elasticity of y wrt. X1
- b2→ partial elasticity of y wrt x2 gen lny= ln(y) gen lnx1= ln(x1) Gen lnx2= ln(x2) regress lny lnx1 lnx2

Example:					
gen lnprice=ln(price)					
gen lnmpg= ln(mpg)					
reg lnprice lnmpg					

Lin-log model

y= b0 + b1*lnx + u regress y lnx

b1→ change in y when lnx changes by 1 unit
b1/100→ change in y when x increases by 1%

Example: gen lnmpg= ln(mpg) reg price lnmpg

Semilog/ growth rate model

- $Y = y_0(1+r)^t$; r=compound rate of growth
- $\ln y = \ln(y_0) + t^* \ln(1+r)$
- Iny= b0 + b1*t +u
- t is the time variable
- B1→ rate at which Iny increases per time period gen lny= ln(y) reg lny t
- Same method if in place of t we have any x variable
- B1*100→ percentage change in Y due to 1 unit change in X→ instantaneous rog

Example: gen lnprice=ln(price) reg lnprice t

Linear trend model

y= b0+ b1.t + u reg y t

• $T \rightarrow$ trend variable

Example: reg price t

Other models

Reciprocal model o y= b0 + b1*(1/x) + u gen x2= 1/x reg y x2

```
Example:
gen mpg_rec= mpg^(-1)
reg price mpg_rec
```

```
    Polynomial model

            y= b0 + b1*x1 + b2*x1<sup>2</sup>+ b3*x1<sup>3</sup> → 3<sup>rd</sup> degree polynomial
            gen x2= x1^2
            gen x3= x1^3
            reg y x1 x2 x3

    Zero-intercept model

            y= b1*x
```

o reg y x, noconstant

IFPRI

Standardized regression

- Y*= b0 +b1.X* + u → Y*= b1.X*+ u → reg through origin
- Y*= (y-mean(y))/SD(y)
- X*= (x-mean(x))/SD(x)

```
sum y x → gives mean and SD for x and y
gen ystar= (y-mean_y)/Sd_y
gen xstar= (x-mean_x)/SD_x
reg ystar xstar
```

 b1→ if x1 changes by 1 standard deviation unit, average value of y1 changes by b1 standard deviation units

```
Example:
gen pricest=(price-6165.25)
/2949.49
gen mpgst=(mpg-21.29) /5.78
reg pricest mpgst
OR
egen pricemean= mean(price)
egen pricesd= sd(price)
gen pricest=(price-
pricemean)/pricesd
egen mpgmean= mean(mpg)
egen mpgsd= sd(mpg)
gen mpgst=(mpg-mpgmean)/mpgsd
reg pricest mpgst
```


Linear regression- types of independent variable

```
■ Continuous- reg y x or reg y c.x
reg price foreign→ all cont
```

```
    Categorical (with >2 categories)-

            Shortcut- reg y i.x –automatically takes the first category (lowest value) as the base category. reg price i.rep78
            Long way-

                    tab x, gen(x_dummy) → generate dummy variable for each category and include (n-1) categories, n=total no. of categories;
```

- otab rep78, gen(rep)
- o reg price rep2 rep3 rep4 rep5

Dummy (categorical with 2 categories)- reg y x or reg y i.x

Base category

How to change base category

- Shortcut- reg y ib#.x where # is the category number you want to be base
- Example- make 3rd category as base

```
oreg price ib3.rep78
```

 Long way- just omit the dummy of the new category but keep all other category dummies.

```
o reg price rep1 rep2 rep4 rep5
```

Include all categories- dummy variable trap due to multicollinearity

Interaction terms

- Interaction terms- $\circ x3 = x1^* x2$ gen x3=x1*x2 reg y x1 x2 x3 ○ Shortcut \circ x1 and x2 are both continuous: reg y c.x1##c.x2 oprice~mpg, weight; oreg price c.mpg##c.weight o x1 is cont. x2 is categorical: reg y c.x1##i.x2 OPrice~mpg, foreign; reg price c.mpg##i.rep78 \circ x1 and x2 are both categorical: reg y i.x1##i.x2
- The above regs include x1, x2 and product of x1 and x2 as independent variables

Interaction terms

- Only interaction term:
 - \circ reg y x1#x2 along with operators c or i.
 - Example: Run regression of price on mpg and mpg*rep78 treating rep78 as categorical.
- When x1=x2, then its squared term;
 - polynomial regression- reg y x1 x1#x1 x1#x1 3rd order polynomial regression
 - o reg price mpg mpg#mpg mpg#mpg#mpg

Part 6.3: Exploring CLRM assumptions

Exploring relationships

pwcorr y x1 x2, star(0.05) sig \rightarrow does estimating a regression even make sense?

scatter y x - linear/quardratic or cubic r/s?
 Depending on the plot include single, squared or cube terms

reg price mpg
acprplot mpg, lowess (run right after regression)

Shows whether to include squared terms or not

Outliers

sum y x1 x2.. \rightarrow check if variables have high standard deviations kdensity x1

- Added Variable plots
- Useful in Multiple regression- Plots the partial regression of Y on X1 keeping X2 constant

avplot x1

avplots – gives plots for all independent variables

 Solution: Don't include those observations that include outlier value kdensity price

```
reg price mpg if price<10000
```


Multicollinearity

- Independent variables should not be perfectly collinear
- gen mpg2= 2*weight
- reg price mpg2 weight
- How to suspect?
 - $\circ \text{High SEs}$
 - $_{\odot}$ Wrong signs of coefficient
 - High R-sq but many coefficients insignificant

Multicollinearity

- Stata automatically drops a variable if it is perfectly collinear with the other
- Example:

gen mpg2= mpg + 2
reg price mpg mpg2

. reg price mpg mpg2

note: mpg2 omitted because of collinearity

Source	SS	df	MS	Number of	obs =	74
				F(1, 72)	=	20.26
Model	139449474	1	139449474	Prob > F	=	0.0000
Residual	495615923	72	6883554.48	R-squared	=	0.2196
				Adj R-squa	ared =	0.2087
Total	635065396	73	8699525.97	Root MSE	=	2623.7
price	Coef.	Std. Err.	t	P> t [98	5% Conf.	Interval]
mpg	-238.8943	53.07669	-4.50	0.000 -34	4.7008	-133.0879
mpg2	0	(omitted)				
_cons	11253.06	1170.813	9.61	0.000 893	19.088	13587.03

Multicollinearity

- To check for high (<1) correlation:

 pwcorr
 pwcorr x1 x2... → >0.5 then high correlation
 - vif (run right after regression)- gives variance inflation factor
 A vif>10 means problem
 scatter x1 x2
- Solution \rightarrow drop the collinear variable, rethink the model

Multicollinearity- example reg price mpg weight scatter mpg weight, sort pwcorr mpg weight

, reg price mpg weight

Source	SS	df	MS	Number of obs	=	74
Model	186321280	2	93160639.9	F(2, 71) Prob > F	=	0.0000
Residual	448744116	71	6320339.67	R-squared Adi R-squared	=	0.2934
Total	635065396	73	8699525.97	Root MSE	=	2514

price	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
mpg weight	-49.51222	86.15604 6413538	-0.57	0.567	-221.3025	122.278
_cons	1946.069	3597.05	0.54	0.590	-5226.245	9118.382

Homoskedasticity/heteroskedasticity

- Residuals should not vary by values of X or yhat; leads to inefficient betas → High SEs
- Graphically-

o rvfplot (run right after regression)

 Gives scatterplot of residuals on y-axis and predicted values of dependent variable on x-axis

 $_{\odot}$ If pattern, then homoskedasticity violated

Example:

```
reg price weight if price<10000</pre>
```

rvfplot

reg price weight rep78 if price<10000</pre>

Homoskedasticity/heteroskedasticity

Tests of homoskedasticity, park test, Glejser test

1)Breusch-Pagan test

Ho- Residuals are homosk.
Reject ho if prob>chi is less than alpha reg y x
estat hettest

2)White Test Ho: Residuals are homoscedastic Reject Ho if prob>chi is too small reg y x estat imtest, white

Homoskedasticity/heteroskedasticity

Solution

 $_{\odot}\,\text{Add/remove some variables}$

 \circ Robust standard errors- reg y x1, robust \rightarrow Rule of thumb is to assume heteroscedasticity in your model and put this option

 $_{\odot}$ Weighted least squares- not covered in this session

Omitted variable bias

- E(e|x)=0)- errors and independent variable not correlated;
- leads to biased & inconsistent beta coefficients \rightarrow large sample doesn't reduce bias
- Test for OV bias-
 - Ramsey RESET test
 - $_{\odot}$ Ho- no omitted variables in model
 - Reject Ho if prob>F is less than alpha
 - Command- ovtest (run right after regression)

Inktest (run right after regression)

- o regresses actual y against yhat and yhat-squared
- \odot Ho- no specification error
- Look for significance of yhat-squared
- \circ yhat-squared insignificant \rightarrow reject Ho \rightarrow no specification error

Irrelevant variable bias

- Leads to inefficient beta coefficients \rightarrow high variance
- Check the significance of irrelevant variable
- See if regression output is affected by removing the variable
- Theory should be the guide
- Sometimes important variables are also insignificant→ even then keep it→ called as control variables

Specification error- Functional form bias

- Should we run linear or log-linear regression?
- Mackinnon-White-Davidson (MWD) test reg price mpg predict yhat1
 Ho: Lir

```
gen lnprice= ln(price)
gen lnmpg= ln(mpg)
reg lnprice lnmpg
predict yhat2
```

```
gen lnyhat1= ln(yhat1)
gen Z= lnyhat1- yhat2
reg price mpg Z
```

Ho: Linear model is correct H1: Log-linear model is correct

Reject Ho if p-value of Z variable is less than alpha, i.e., if coefficient of Z is statistically sig.

Normality of errors- graphically

- Errors are normally distributed; if violated then all problems arise
- First estimate ehat

```
regress y x1 x2
predict ehat, resid
```

- 1. Density curves:
 - $\circ\, {\rm kdensity}\, {\rm ehat}\, ,\, {\rm normal}\, \rightarrow {\rm plots}\, {\rm ehat}\, {\rm and}\, {\rm a}\, {\rm normal}\, {\rm distribution}\, {\rm for}\, {\rm comparison}$
 - histogram ehat, kdensity normal → above plot + a histogram of residuals
- 2. Normal probability plots- plots residuals on x-axis against E(residuals|normal) on y-axis
 - $_{\odot}$ If normal, then the residuals lie on straight line
 - \circ pnorm ehat \rightarrow non-normality in the middle range of residuals
 - \circ qnorm ehat \rightarrow non-normality in extreme values of data

Normality of errors- tests

- Jarque Bera test (large sample test)

 Ho: Residuals are normally distributed
 Reject Ho if p-value of computed chi-sq is lower than alpha
- a) Manually construct JB statistic and compare it with chi-square value regress y x1 x2 predict ehat, resid sum ehat, d →get N, skewness, kurtosis from this output

Construct JB as follows and compare it with chi-square

$$JB = \frac{n}{6} \left[S^2 + \frac{(K-3)^2}{4} \right] \sim \chi^2_{(2)}$$

Normality of errors- tests

b) Automatically do JB test regress y x1 x2 predict ehat, resid jb ehat

Ho is rejected is alpha is more than Chi(2) from output

Normality of errors- tests

2. Shapiro-Wilk test

Ho- normal distribution of residuals
Reject Ho if p-value is less than alpha
Command:

```
regress y x1 x2
predict ehat, resid
swilk ehat
```

3. Anderson-Darling test (large sample test)

Ho- Normal distribution of residuals
Do not reject Ho if p value is more than alpha
Command: 1mnad y x1 x2
No need to run regression first

ers\shweta.gupta\Desktop\stata15\Stata_15.0x64\ado\t

Tests of significance after regression

Ho: B_k=0

Regression output directly gives t-statistic and p-value

 \odot After regression run:

o test x1 → gives F statistic(=square of t statistic) and its significance \circ F ~ F(1,n-k)

- Ho: B_k=k
 - otest x1=k (k!=0) \rightarrow revise t-statistic
 - test x1=-k
 - reg price mpg
 - o test mpg=-250
- Ho:B₁ and B₂ form a linear relationship→ this is not testing for multicollinearity

 test x1=x2
 - \circ test x1+x2= k
 - otest x1 x2, mtest \rightarrow testing $B_1=0$ and $B_2=0$ in one command

Tests of significance

- Joint testing:-
- Ho: B₁=B₂=B₃=.....=B_k=0

 Test of joint significance of all variables
 test x1 x2.. Xk
 F~ F(k-1,n-k)
 verify F-statistic from the regression output

ANOVA table for joint testing

- How is F statistic calculated?
 - \circ F= (ESS/df) / (RSS/df)
- F~ F(k-1,n-k)
- Exercise: Check regression output for ANOVA table and calculate F

Part 7: Types of data

Types of data

- Cross sectional → multiple variables/individuals/groups data given in a single time point (no time dimension)
- Time series → data given in successive order for multiple time points (has a time dimension)
- Panel data → same set of individuals are tracked for multiple time points and their data on one/many variables collected for all those times
- Pooled data
 data on multiple individuals available for multiple time points but <u>not necessarily same individuals tracked overtime</u>

Cross-sectional data

student_	name	score	income_	annual_	lakh	year
А		98	8			2000
В		45	4			2000
С		67	4.5			2000
D		89	6.8			2000
E		45	4			2000
F		34	6			2000
G		90	21.4			2000
Н		78	20			2000
I		65	3			2000
J		48	7			2000
К		67	1			2000
L		80	6			2000
Μ		56	8.9			2000
N		59	3.5			2000
0		67	8			2000

Time series data

year	score_avg	income_annual_avg
2000	98	8
2001	45	4
2002	67	4.5
2003	89	6.8
2004	45	4
2005	34	6
2006	90	21.4
2007	78	20
2008	65	3
2009	48	7
2010	67	1
2011	80	6
2012	56	8.9
2013	59	3.5
2014	67	8

Panel data

student_	name	score	income_annual_lakh	year
A		98	8	2000
В		45	4	2000
С		67	4.5	2000
D		89	6.8	2000
E		45	4	2000
A		98	8	2001
В		45	4	2001
С		67	4.5	2001
D		89	6.8	2001
E		45	4	2001
A		98	8	2002
В		45	4	2002
С		67	4.5	2002
D		89	6.8	2002
E		45	4	2002

Pooled data

student_	name	score	income_	_annual_	lakh	year
A		98			8	2000
В		45			4	2000
С		67			4.5	2000
D		89			6.8	2000
E		45			4	2000
A		98			8	2001
Р		45			4	2001
Q		67			4.5	2001
R		89			6.8	2001
E		45			4	2001
Y		98			8	2002
Z		45			4	2002
Н		67			4.5	2002
К		89			6.8	2002
L		45			4	2002

Question

• What type of data is the auto.dta used in the sessions?

Monte Carlo experiments

- Conducting simulations over an artificial sample
- Help in understanding properties of OLS estimators
- Unbiasedness: b1 ~ B1 as n→ ∞
- Consistency: bias $\rightarrow 0$ as $n \rightarrow \infty$
- Normality: b1 ~N(B1,σ)
- Efficiency: Var(b1) is the lowest among all b1s
- Show using the monte carlo do-file

Time series data

- Example:-
- GDP and inflation rate for a country over time

year	gdp_perc	inflation_rate
1990	3%	5.01%
1991	4%	5.2%
1992	4.2%	5.89%
1993	4%	4%
1994	3.65%	4.5%
1995	4.5%	4.32%
1996	5%	5%
1997	5.1%	5%
1998	4.98%	5%
1999	3%	6%
2000	3.8%	5.89%
2001	3.9%	5.6%

Time series analysis

- Minimum no. of times- 20
- First ensure that the time variable in the correct format
- Are there any gaps in the time variable?
- Then do tsset datevar
- If gaps in time variable:
 - A- create a continuous time variable (say, time), and do tsset time

 $\odot\,\text{B-}$ fill gaps in the time variable

otsset datevar

 otsfill → data will show as missing for times where there was a gap in the time variable

Lagged variables

- Lags- create a variable that takes value of previous year for each year
- gen x2= L1.x1 \rightarrow x2(t)= x1(t-1)
- gen x2= L2.x1 \rightarrow x2(t)= x1(t-2)
- gen xk= Lk.x1 \rightarrow x2(t)= x1(t-k)

```
reg y x1 L1.x1 L2.x1
```

- reg y x1 L(1/5).x1
- Note- with lags, missing values are created in lagged variables. Those observations get dropped in regression

Lead variables

- Leads/forwards- create a variable that takes value of next year for each year
- gen x2= F1.x1 \rightarrow x2(t)= x1(t+1)
- gen x2= F2.x1 \rightarrow x2(t)= x1(t+2)
- gen x2= Fk.x1 \rightarrow x2(t)= x1(t+k)
- reg y x1 F1.x1 F2.x1
- reg y x1 F(1/5).x1
- Note- with leads, missing values are created in forward variables. Those observations get dropped in regression

reg y x1 L1.x1 F2.x1 →How many observations will be dropped?

Difference variables

- Create a variable that takes difference of value between 2 years for each year
- gen x2= D1.x1 \rightarrow x2(t)= x1(t) x1(t-1)
- gen x2= D2.x1 \rightarrow x2(t)= x1(t) x1(t-2)
- gen x2= Dk.x1 \rightarrow x2(t)= x1(t) x1(t-k)
- reg y x1 D1.x1 D2.x1
- reg y x1 D(1/5).x1
- Note- missing values are created in difference variables. Those observations get dropped in regression

Problems in time series data

 Autocorrelation- when errors at different time points are correlated to each other

o corrgram x1, lags(k) (interpret output)

 Non-stationarity- when properties of time series depend on time o dfuller x1, lag(k)

country	year	gdp_perc	inflation_rate
India	1990	3%	5.01%
India	1991	4%	5.2%
India	1992	4.2%	5.89%
USA	1990	4%	4%
USA	1991	3.65%	4.5%
USA	1992	4.5%	4.32%
China	1990	5%	5%
China	1991	5.1%	5%
China	1992	4.98%	5%
Russia	1990	3%	6%
Russia	1991	3.8%	5.89%
Russia	1992	3.9%	5.6%

Panel data

Example:-

contact

- shweta.gupta@cgiar.org
- shwetagpt33@gmail.com

