

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Climate change and food security

(Food-land-water-energy nexus)

Vartika Singh

Ph.D. Candidate, Humboldt University of Berlin Sr. Research Analyst, IFPRI, New Delhi Sr. Research Officer, IIM- Ahmedabad

18 March 2024, MANAGE Hyderabad

Presentation Plan

Context of food security and climate change and their relationship

Frameworks for assessment

Adaptation and mitigation options

Current research and tools (FABLE Consortium)

Our ongoing research in India (using case studies)

The challenge

66% of total crop production.

Source: Nature+ Initiative of OneCGIAR

could become degraded by 2050.

What are some of the ways in which climate change affects food security?

(i) Start presenting to display the poll results on this slide.

Focus on FOOD SYSTEMS

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Factors affecting agriculture and food security –

 arable land, available fresh water, and skilled labor, given constant physical assets of farming, suitable climate conditions, including rainfall, and soil quality, landscape and geographic location, and species of crops and livestock

ALL of these things will be affected by climate change!

Will affect

- Food availability
- Access
- Food utilization
- Stability

IPCC Special Report

People currently use one quarter to one third of **land's** potential net primary production for food, feed, fiber, timber and energy.

Agriculture currently accounts for ca. 70% of global fresh-water use

Data available since 1961 shows the per capita supply of vegetable oils and meat has more than doubled and the supply of **food calories** per capita has increased by about one third

Currently, 25–30% of total food produced is lost or **wasted** - estimated 821 million people are still **undernourished**

Frequency and intensity of **droughts** has increased in some regions (including the Mediterranean, west Asia, many parts of South America, much of Africa, and north-eastern Asia) and there has been an increase in the intensity of heavy **precipitation** events at a global scale

Rising sea levels, CO2–induced ocean acidification, and changes in water temperature have also impacted the health and sustainability of marine and freshwater **fisheries** crucial to regional dietary diversity and **livelihoods**

High confidence

- contributions arising from **unsustainable energy use, land use and land-use change**, lifestyles and **patterns of consumption and production** across regions, between and within countries, and among individuals

Adverse impacts on agricultural production

Adverse and positive impacts attributed to climate change

- Physical water availability
- Animal and livestock health and productivity

Impacts of climate change

□ increased probability of crop failure (IPCC 2019)

□ Increased incidences of droughts and floods

Increased food-borne and other infectious diseases

□ Reduction in biodiversity

□ Increase all forms of malnutrition and obesity

In India specifically,

- Food systems strongly dependent on the agricultural sector
- most of the population is employed
- food demand, employment, and incomes as well as livestock feed requirements
- 39% of India's population (472 million people) is under-nourished, rise in NCD's
- Healthy diets not affordable for over 2/3rds of the population
- Agriculture sector (including livestock) emits 18% of Greenhouse Gas Emissions (causing global warming)
- 80% of freshwater used for production of cereal crops (rice and wheat)

Potential impacts on yields (low emissions scenarios)

Source: Molina Bacca, E.J., at.al., 2023

High emissions scenario

CGIAR NEXU Realiz Across and E

Projected yield change for four major crops

CGIAR NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Source: Molina Bacca, E.J., at.al., 2023

FRAMEWORKS OR PATHWAYS

Not just nutrition, but econutrition

Planetary Boundaries Framework

The planetary boundaries concept presents a set of nine planetary boundaries within which humanity can continue to develop and thrive for generations to come

Need for multi-sectoral approach

Conference of the Parties (COP27) - first where food and agriculture were discussed

SDG goals are siloed – need to create convergence across goals to create a nexus

Convergence across policies – nutrition policy disconnected from agriculture, climate change etc. and vice-versa

Not just nutrition-sensitive agriculture.. Nutrition-sensitive environmental approach

Inter-sectoral policy analysis needed

FIGURE I: USAID MULTI-SECTORAL NUTRITION CONCEPTUAL FRAMEWORK Adapted from UNICEF, 2013⁶ and Black et al., 2013¹

- Accountable Policies that Enable Participation and Transparency
- Systems: Quality Improvement/ Quality Assurance, Management, Financial, Logistics, Monitoring and Evaluation, Nutrition Surveillance

What do you see as the major challenges in multi-sectoral approach in your country/region?

(i) Start presenting to display the poll results on this slide.

Adaptation and mitigation response options

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

CGIAF

Options include, but are not limited to,

- improved and sustainable land and forest management,
- soil organic carbon management,
- ecosystem conservation and land restoration,
- reduced deforestation and degradation,
- And changing diets and reduced food loss and waste

FABLE Consortium

A network for sustainable food systems at national and global scales

The Food, Agriculture, Biodiversity, Land-Use and Energy (FABLE) Consortium

Our approach

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Scientific tools that help understand the effect of policies in one sector on another

(integrated assessment)

Converging across SDG's Synergies and Trade-offs

TOOLS

FABLE Calculator

MAgPIE model

The Food, Agriculture, Biodiversity, Land Use, and Energy (FABLE) Pathways Consortium

A **collaborative initiative** launched in 2017 operating as part of the <u>Food and Land-Use</u> <u>Coalition</u> (FOLU)

Objective: to understand how countries can transition towards sustainable land-use and food systems and collectively meet the Sustainable Development Goals and objectives of the Paris Agreement

Independent research teams from 21 countries and the European Union (more countries joining as we speak)

Published several reports and policy briefs on countries' transition pathways

FABLE India

Use of technical tools (land-use models, FABLE Calculator) and soft-linkages between models

Science-based methodology incorporating climate change assessments

Food, land, water, energy nexus

Stakeholder engagement

FABLE CALCULATOR

The FABLE Calculator

Overview of the FABLE Calculator

The FABLE Calculator

- It includes **76 products**: crops, livestock products, vegetable oils, and sugar.
- It covers each five-year time step over 2000-2050.
- Projections of future demand drive production and future land use.
- Limited land availability can reduce the consumption level compared to the initial target.

														/						
elected cr	combination of	-				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·											/		
Scenario	Scenario on	n	o Scenario on																	
		on food		the share of			Afforrestation		1											
	-	diet	availability						4											
BAU E	BAU		IIN NoExpansio	ہ Current	BAUGrowth	BAUGrowth	n NoAffor	Middle	I											
							· · · · · · · · · · · · · · · · · · ·		¹											
			Tot	tal Production	A		,	TABLE: TotalResults				0110	0110	2410	0410	0110	0410			
12	0000							DIRECT	DIRECT	CALC	CALC	CALC	CALC	CALC	CALC	CALC	CALC			
Abv-	.00								Table - Total production quantity and value											
										Hľ	ISTORICAL		ARGET		ASIBLE	HISTORICAL	TARGET	FEA		
100	0000									local currency 1							n3 100 t or 1000 m3			
								Product 💌		prodvloc_hist			prodvusd_targ					rins 100 t		
8′	0000					/		TOTAL	2000											
1	55							TOTAL	2005											
0 t			_					TOTAL	2010											
	0000							TOTAL	2015		· · · · · · · · · · · · · · · · · · ·	157454518.657					41111.74	.747		
. <u>5</u>			4				/ [_ '	TOTAL	2020	1		176424372.743	743 4055732.707	707 112695837.647	2590708.911	.11	47181.49	.493		
L o	0000				/			TOTAL	2025		, · · · · · · · · · · · · · · · · · · ·	197679082.273					54125.93			
	.00							TOTAL	2030			221493784.487					62068.85			
-								TOTAL	2035		· · · · · · · · · · · · · · · · · · ·	248176740.984					71151.31			
20′	0000				-			TOTAL	2040			278073324.911					81534.04			
<i>i</i>								TOTAL	2045			311570488.019					93400.11			
-	_ _						/	TOTAL	2050			349101765.323	323 8025327.938	938 171391893.552	3940043.530	0.	106958.06	J65		
_	2000	.100	2010	2020 2	2030 20	2040 205	2050													
_								To Di To DesulteDr	I											
			aprouquise 💡	■ prodq_trag ■ pro	/000_Teds			TABLE: ResultsProd		DIDECT	DATA 1	DATA 1	DATA 1	CALC	CALC		CALC			
								DIRECT	OUTPUT-1	DIRECT	DATA-1	DATA-1	DATA-1	CALC	CALC	OUTPUT-1	CALC			
			_ <u>(</u> /					Table - Pro	oduction valu	ue by com	modity									
Rice Production														HISTORICAL			TARGET			
14000													Production			Production				
i											Producer pr	rices	quantity	Prod value V	e (local currency)	quantity	Prod value (≱ (local ci		
12000							_ '						quantity		A	quantity				
()	Welcom		conarios Sele	ection Scenari	arios Defination	SCENATHO	ON report	FOOD PRODUCTIO		ITY LAND Em	Emission Water 1 C		and 1 data der	mand 2_calc_lives	estock 2_data_li	i + : ••				
,	Weicom	e:	Ananios Seres	1011	105 Dennigues	Delivities	M_report				AISSION Water	alc_uata_ucinan	d 1_0010_00111	Inu <u>L'an</u>	.OCK					

Basic Structure

The FABLE Method

MAgPIE (Model of Agricultural Production and its Impact on the Environment)

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

CGIA

Model Basics

Optimization | Recursive dynamic

Cost minimization of consecutive time slices with a length of 5-20 years until 2100.

Resolution | 3 spatial layers

Global | 5-20 world regions | 50-2000 spatial clusters

Balance | Biophysical and economic side

Bringing together biophysical (plant growth, carbon, nutrients, water) and

economic (costs, prices, demand, policies) aspects.

- Global ag. cost minimization ٠
- **Optimal land-use patterns** ٠
- Food demand (age, sex, • demographics including pregnancy)
- Crop, livestock and processed ٠ products
- Spatially explicit on 0.5°x0.5° •
- Endogenous technological change ٠
- Ag. and land-use change emissions ٠
- Climate change mitigation •

Limitations

Lack of granular data

- Consumption (last round from 2011)
- Production (drivers of production decisions)
- Access to food (sources, prices etc.)

Lacking evidence

- Drivers of behavior change (can serve as parameters in our models)
- Whether nature-based farming is sustainable and healthy
- Access and consumption of local foods sufficient to meet nutrient requirements

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Regulating water use for natural resource conservation in India

Dietary transitions and their environmental impacts

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Research question

NVIRONMENTAL RESEARCH ETTERS

How can water regulatory policy affect production and food security in India? ETTER • OPEN ACCESS

Assessing policy options for sustainable ndia's cereal production system

'artika Singh^{6,1,2,3,4} (D), Miodrag Stevanović³ (D), Chandan Kumanjan Kumar Ghosh² (D), Hermann Lotze-Campen^{1,3} (D) and A ublished 5 October 2023 • © 2023 The Author(s). Published by IOP Puk nvironmental Research Letters, Volume 18, Number 9 pcus on the Future of Water-Limited Agricultural Landscapes itation Vartika Singh *et al* 2023 *Environ. Res. Lett.* 18 094073 •OI 10.1088/1748-9326/acf9b6

Background policy context

Food production in the world depends on water to a large extent

 millions of farmers in the world use irrigation to cultivate major crops, particularly rice and wheat

India is the largest consumer of freshwater globally (91% for food production)

• - 80% of which is used for rice and wheat cultivation

Consequence of Green Revolution where focus was on meeting food selfsufficiency

• - high subsidies, high-yielding varieties

India's agricultural production is resourceintensive and cereal-centric (distortionary subsidies)

 Power subsidies ~ 12 billion USD in 2015-16 while Irrigation subsidies ~2 billion USD in 2013-14

Some states have ~0 price!

• Irrigation is not demand-driven anymore, but rather dependent on the electricity supply or lower tariffs

• 1/5th groundwater units either in critical or over-exploited state (particularly in the North-west)

Smoothened curve of Irrigated area under rice and wheat

collected and compiled under the project on Village Dynamics in South Asia

Benefits Across Water, Energy, Food and Ecosystems CGIAR

JC

Policy measures proposed

Reduce subsidies / increase water prices

- Differential water tariffs for relevant consumer groups have been found to bring decreases in in irrigation water consumption
- Contrary evidence also suggest that demand for water is less elastic at lower price levels
- Little political traction
- Need a middle path

Impose physical restrictions/quota

- Relatively easier to implement
- Studies point to quotas helping regulate water use at the margins
- Little administrative capacity

Implications

• Implementing constraints on a key resource, water

-repercussions on the overall production patterns of the country,

-including commodity prices

- Relative costs of production and well as national and international commodity prices
 - have significant impacts on an economy's trade patterns and trade balances
- Virtual water assessments have demonstrated that typically wheat and maize are exported from countries that are relatively abundant in water resources

Create 4 hypothetical scenarios and compare it with a Business-as-Usual scenario until 2050

Policy tool	Scenario description	Pumping Cost (USD per meter cube)	Physical Water Availability setting	Scenario name
BAU	No quota implemented, Pumping costs (~INR 4 per kWh)	0.005	No policy	Business as Usual (BAU)
Price-related effect I	Pumping cost prices equivalent to highest price of energy across all states in India from 2007-2013 (~ INR 8 per kWh)	0.01	No policy	Low-price
Price-related effect II	Quadrupling of India prices (~ INR 16 per kWh)	0.02	No policy	High-price
Quantity-related effect I	Reserves 40% of available water for , remaining water is available for human uses (agricultural and non-agricultural)	0.005	Quota policy I	Low-restriction
Quantity-related effect II	Reserves 60% of available water for , remaining water is available for human uses (agricultural and non-agricultural)	0.005	Quota policy II	High-restriction

• Water withdrawals for agricultural cultivation reduce significantly when taxes are levied

• Taxes cause greater shock to water use than physical restrictions (quotas)

 Under both policies, agricultural production takes a hit (but not as much!)

- Large immediate impact on prices, but it stabilizes in the long-run (by 2050)
- Greater price shocks felt for wheat production (highly water intensive)
- Net exports decline in short-term, but restore by 2050

Consumer Commodity Price Index, and Prices of Rice and Wheat across scenarios

Net Exports of Cereal Crops Across Scenarios between 2020 and 2050

Conclusion

- Both policies offer benefits and have shortfalls
 - In the short term, pricing policy prohibitive, offers benefits in the long run
 - Needs political will (!)
- Energy prices can be increased to some extent without much adverse effects
- Spatial targeting of physical restrictions may offer benefits
- Deeper analysis at sub-national level (particularly basin level) is needed

Research Question

Are healthy diets environmentally sustainable? What gains can be had from switching to healthy diet baskets?

Globally,

- Emphasis on Planetary Healthy Diets
 [EAT Lancet Commission Recommendations 2019]
- Diets that save energy, lessen food waste, and include environmental sustainability
- Transitioning to balanced intake of most food groups considered both human and environment friendly

Key parameters of human and planetary healthy diets

Predominantly plant-based diets, with significant room for consumption o animal, oceanic and alternative proteins

More protective foods like fruits, vegetables, whole grain, legumes and nuts

(2)

Limit salts, sugars and saturated fats

Increased consumption of whole, rather than refined grains

Preferably no/limited ultaprocessed foods

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Other important factors:

- i. Reduced food loss and waste
- ii. Improvement in soil health
- iii. Non-use of degenerated land
- iv. Equity in distribution
- v. Reduction in obesity/underweight populations

Recommended healthy diets (human and planetary)

Name	Diet type	Trade assumption
BAU / SSP2	SSP2 diets following endogenous demand	Focus on self-sufficient production with deficit met through imports or surplus being exported. Trade tariffs and margins are included
BAU_liberalized_trade	SSP2 diets following endogenous demand	Reduced trade tariff barrier with upto 30% tariff reduction by 2050
EAT_all	All regions including India transition to EAT Lancet dietary recommendations by 2030	Focus on self-sufficient production with deficit met through imports or surplus being exported. Trade tariffs and margins are included
NIN_India_EAT_others	India transitions to dietary recommendations by the National Institute of Nutrition (NIN) whereas all remaining regions transition to EAT Lancet	Focus on self-sufficient production with deficit met through imports or surplus being exported. Trade tariffs and margins are included
NIN_India_SSP2_others	Only India transitions to NIN recommended diets, whereas all other regions follow the SSP2 diets	Focus on self-sufficient production with deficit met through imports or surplus being exported. Trade tariffs and margins are included
NIN_India_SSP2_others_li beralized_trade	Only India transitions to NIN recommended diets, whereas all other regions follow the SSP2 diets	Reduced trade tariff barrier with upto 30% tariff reduction by 2050

• Greater diversity in food consumption is possible by integrating locally recommended diet baskets.

• Feasible to meet Minimum Dietary Energy Requirements (MDER)

Calorie Intake

- Locally recommended diets have positive environmental impacts than BAU
 - Lesser expansion of pasture lands, reduced reduction of other natural lands
 - Reduced GHG emissions

Change in GHG Emissions

Using the case of dietary transitions in India, we demonstrate the role of modelling tools in answering pertinent policy questions.

Need for further validation and downscaling of tools at the micro-level to determine the impact of policy measures on important human and environmental health outcomes.

The **nexus approach of assess food-land-water-energy** allows an assessment for meeting **SDGs** alongwith synergies and trade-offs between sectors.

How can we evaluate national policies to integrate multisectoral approach? PDS?

NEXUS Gains: Realizing Multiple Benefits Across Water, Energy, Food and Ecosystems

Takeaways

Conclusion

 Tools that enable analysis of both short-term scenarios for sustainable transformation are needed

• Analysis of Nexus issues – food, land, energy, water enables to understand synergies and trade-offs between indicators

• Deep dive into issues at the sub-national level is the need of the hour

Thank you

vartika.singh@cgiar.org vartikas@iima.ac.in

Vartika Singh

